Benha University Faculty of Engineering at Shoubra

Electrical Engineering and Control (*EEC*) *Department, EEC380: Industrial Training* (1) *Summer 2020*

EEC380: Industrial Training (1) Summer 2020

MATLAB

Industrial Control

Dr. Islam Mohamed Dr. Mohamed Selmy

Day 1, EEC380: -Industrial Training (1)

Elements of Simulink

Objectives

- •Understand modeling and simulation of problems
- •Use Simulink for understanding problems
- •Use Simulink for solving problems
- •Being able to use Simulink in Research and Work

What is Simulink?

Ordinary Differential Equations Solver (ODE)
Block based Model description
Non-Linear Models
Real-time Code Generation

Starting Simulink From MATLAB command line simulink From Toolbar

From Simulink MDL file Direct open of MDL file (sim,simset/simget,open_system/load_system)

Simulink Library Browser

👿 Simulink Library Browser		
File Edit View Help		1
Signal Generator: Output various wave forms: Y(t) = Amp ³ Waveform(Freq. t)		
📮 🙀 Simulink 🔼		Ground
Commonly Used Blocks		
Continuous	(1)	In1
		Pulse Generator
Logic and Bit Operations		
Math Operations		Ramp
	1-1 M	Random Number
Ports & Subsystems		
🔄 Signal Attributes		Repeating Sequence
Signal Routing		
Sinks 7		Repeating Sequence Interpolated
23- Sources		
Additional Math & Discrete	05	Repeating Sequence Stair
Aerospace Blockset		3
E CDMA Reference Blockset		Signal Builder
🛨 🙀 Communications Blockset	0000	
🦳 🏹 Control System Toolbox	00	Signal Generator
🖅 🙀 Embedded Target for Infineon C166(
主 📑 Embedded Target for Motorola® HC1		Sine Wave
Embedded Target for Motorola® MP(Embedded Target for OSER/UDV®		
		Step
Embedded Target for TI C6000 DSP	116.71	
	11VW	Uniform Random Number
Ready		

🙀 Simulink Library Browser		
File Edit View Help		
Scope: simulink/Sinks/Scope		
🖃 駴 Simulink 💽		
🔄 Commonly Used Blocks		Display
Continuous		
Discontinuities		Floating Scope
Discrete		124111
		Out1
Bal Math Operations		
- Model Verification		Scope
- D- Ports & Subsystems	STOP	Stop Simulation
Signal Routing		Terminator
Sinks		
Sources	untitled.mat	To File
User-Defined Functions		
庄 🖄 Additional Math & Discrete	simout	To Workspace
Aerospace Blockset		
		XY Graph
Embedded Target for Joficeon C1666		
Embedded Target for Motorola® HC1		
Embedded Target for Motorola® MP(
+ Embedded Target for OSEK/VDX®		
Embedded Target for TI C2000 DSP		
🖅 🙀 Embedded Target for TI C6000 DSP		
<		
Ready		

Building a Model

Drag and Drop blocks from Library Browser

or activate context menu of block and select "Add to ..."

Block Types

- Source generate data
- Sink receives data
- Virtual Block perform cleanup
- Subsystem aggregation of blocks (graphical or logical)
- Custom Blocks (S-Functions) C or M-code based

Example

Manipulating Blocks

•Multiple Selection with Shift

•Multiple Selection with Box Selection

• copy

•Selection

•Drag with CTRL

Iove Blocks

•Drag

```
•Rotate (CTRL+R)
```

Connect Blocks

•Select first and select second using CTRL

•Branch line by holding CTRL from an existing line

•Disconnect block by drag a block holding SHIFT

Running a Model

sson2_zero				
Edit View Simulation Format	Tools Help			
∍∎∞ ⊁®≣ 4⇒1	r Se se ► = nf	Normal 💽 🖧 🖽 🖄 🔅 🎼 🖡	a m 🐵	
	Clock	Dianlary		
		an only on p		
Y		100% ode45	li.	
sson2_zero				
Edit View Simulation Format	t Tools Help			
■● 2回 2日	21 22 (22 ▶ ■ m	Normal 🔄 🔐 💆 🖄 🚺 🖡		
Pause/Stop				
	0	5.281a+004		
Statuc		Current Time	Integration ⁻	Time
bialus				
/				
6			~	

- Write the governing differential equation (DE) for the RC circuit shown in fig(3) when switch S₁ is closed. Write a MATLAB script to analytically solve for the capacitor voltage and plot it against time. Compare the results with that obtained using Simulink(by two methods)
- Hint (use MATLAB simulink sim-power system & MATLAB continuous blocks

Ex 2

- Write the governing differential equation (DE) for the RL circuit shown in fig(4) when switch S₁ is closed. Write a MATLAB script to analytically solve for the capacitor voltage and plot it against time. Compare the results with that obtained using Simulink(by two methods)
- Hint (use MATLAB simulink sim-power system & MATLAB continuous blocks

Ex **3**

- Repeat ex 3 in series RLC circuit fig(5)
- Using Simulink, find the current in the circuit and voltage across each element. Use the initial conditions $i_L(0)=0$ and $v_c(0)=0.5$ V

EX4

Consider the following SISO system described by the differential equation. Use simulink to plot the output y(t) where u(t) is unit step function.

 $\frac{d^4 y(t)}{dt^4} + 3\frac{d^3 y(t)}{dt^3} + 4\frac{d^2 y(t)}{dt^2} + 8\frac{dy(t)}{dt} + 2y(t) = 6u(t)$

Ex(5)

• For circuits shown in figures, use simulink sim-power system to find voltages at each node and the current through each resistor. All voltage and current sources are DC.

EX 6 Plot the time variation of the load voltage, load current, and the voltage drop across the diode. If $v_s = 120$ V rms at 60 Hz and R= 10 Ω .use simulink

